A Role of Medial Olivocochlear Reflex as a Protection Mechanism from Noise-Induced Hearing Loss Revealed in Short-Practicing Violinists
نویسندگان
چکیده
Previous studies have indicated that extended exposure to a high level of sound might increase the risk of hearing loss among professional symphony orchestra musicians. One of the major problems associated with musicians' hearing loss is difficulty in estimating its risk simply on the basis of the physical amount of exposure, i.e. the exposure level and duration. The aim of this study was to examine whether the measurement of the medial olivocochlear reflex (MOCR), which is assumed to protect the cochlear from acoustic damage, could enable us to assess the risk of hearing loss among musicians. To test this, we compared the MOCR strength and the hearing deterioration caused by one-hour instrument practice. The participants in the study were music university students who are majoring in the violin, whose left ear is exposed to intense violin sounds (broadband sounds containing a significant number of high-frequency components) during their regular instrument practice. Audiogram and click-evoked otoacoustic emissions (CEOAEs) were measured before and after a one-hour violin practice. There was a larger exposure to the left ear than to the right ear, and we observed a left-ear specific temporary threshold shift (TTS) after the violin practice. Left-ear CEOAEs decreased proportionally to the TTS. The exposure level, however, could not entirely explain the inter-individual variation in the TTS and the decrease in CEOAE. On the other hand, the MOCR strength could predict the size of the TTS and CEOAE decrease. Our findings imply that, among other factors, the MOCR is a promising measure for assessing the risk of hearing loss among musicians.
منابع مشابه
Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults.
The objective of the current study was to evaluate the predictive role of the olivocochlear efferent reflex strength in temporary hearing deterioration in young adults exposed to music. This was based on the fact that a noise-protective role of the medial olivocochlear (MOC) system was observed in animals and that efferent suppression (ES) measured using contralateral acoustic stimulation (CAS)...
متن کاملNoise priming and the effects of different cochlear centrifugal pathways on loud-sound-induced hearing loss.
Priming/conditioning the cochlea with moderately loud sound can reduce damage caused by subsequent loud sound. This study examined immediate effects of short-term priming with monaural broadband noise on temporary threshold shifts (TTSs) in hearing caused by a subsequent loud high-frequency tone and the role of centrifugal olivocochlear pathways. Priming caused delay-dependent changes in tone-i...
متن کاملProtection from noise-induced hearing loss by Kv2.2 potassium currents in the central medial olivocochlear system.
The central auditory brainstem provides an efferent projection known as the medial olivocochlear (MOC) system, which regulates the cochlear amplifier and mediates protection on exposure to loud sound. It arises from neurons of the ventral nucleus of the trapezoid body (VNTB), so control of neuronal excitability in this pathway has profound effects on hearing. The VNTB and the medial nucleus of ...
متن کاملEffects of Exposure to Impact Noise on the Hearing of Armed Forces and Evaluation of the Methods to Control and Decrease its Consequences: A Review Study
Background and Aim: Exposure to impact noise (short-term, high intensity) higher than permitted levels results in injury to the auditory system. Armed forces are one of the occupational groups exposed to these types of noises resulting from gunshots. In this study, relevant articles and research on the adverse effects of impact noise, hearing loss, and tinnitus in armed forces and effective con...
متن کاملPredicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength.
Permanent noise-induced damage to the inner ear is a major cause of hearing impairment, arising from exposures occurring during both work- and pleasure-related activities. Vulnerability to noise-induced hearing loss is highly variable: some have tough, whereas others have tender ears. This report documents, in an animal model, the efficacy of a simple nontraumatic assay of normal ear function i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016